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Abstract

In Part I, we described an analytical approach to the computation of the demagnetization tensor field for a uniformly

magnetized particle with an arbitrary shape. In this paper, Part II, we introduce two methods for the numerical

computation of the demagnetization tensor field. One method uses a Fourier space representation of the particle shape,

the other starts from the real space representation. The accuracy of the methods is compared to theoretical results for

the demagnetization tensor of the uniformly magnetized cylinder with arbitrary aspect ratio. Example computations are

presented for the hexagonal plate, the truncated paraboloid, and a so-called ‘‘Pac-Man’’ shape, recently designed for

MRAM applications. Finally, the magnetostatic self-energy of a uniformly magnetized regular polygonal disk of

arbitrary order is analyzed. A linear relation is found between the order of the polygon and the critical aspect ratio for

in-plane vs. axial magnetization states.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The computation of the magnetic induction
inside and surrounding a uniformly magnetized
particle of arbitrary shape requires knowledge of
the demagnetization tensor field, also known as
the point-function demagnetization tensor [1]. In
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Part I of this two-paper series [2], we have shown
analytical computations of the demagnetization
tensor field (DTF) of the cylinder. This is a special
shape for which the equations can be solved
analytically. In most cases, however, numerical
methods must be used to determine the tensor
field. In this paper, Part II, we will introduce two
different numerical procedures for the computa-
tion of the DTF. In Section 2, we summarize the
theoretical model for the DTF and related
quantities, the magnetostatic energy and the
d.
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magnetometric demagnetization tensor. Section
3.1 deals with a solution method which can be
used if an analytical expression for the shape
amplitude is available. We also introduce an
improved version of the latter case, in which a
filter function is applied in Fourier space to
suppress Gibbs-like oscillations in the real space
DTF. In Section 3.2, we introduce a numerical
procedure which starts from the shape function of
the object, and employs numerical fast Fourier
transforms (FFT) to determine the DTF.
Throughout this paper, we compare the numerical
results with analytical computations based on the
expression for the DTF of the uniformly magne-
tized cylinder of Part I [2]. We conclude the paper
with a computation of the critical aspect ratio for
in-plane vs. out-of-plane magnetization for regular
polygonal disks of arbitrary order.
2. Summary of the theoretical model

As shown by Beleggia and De Graef [3], the
demagnetization tensor field for a uniformly
magnetized particle with shape function DðrÞ (also
known as characteristic function) can be repre-
sented in Fourier space as follows:

NijðkÞ ¼ DðkÞ
kikj

k2
; ð1Þ

where k is the frequency vector, and DðkÞ the
shape amplitude (i.e., the Fourier transform of the
shape function). In real space, the demagnetization
tensor field is given by the inverse Fourier trans-
form of Eq. (1):

NijðrÞ �
1

8p3

Z
d3k

DðkÞ
k2

kikje
ikr: ð2Þ

The following relations were explicitly derived in
Ref. [3]:

1. the trace of NijðrÞ is equal to the shape function
DðrÞ;

2. the demagnetization energy can be written in
terms of the shape amplitude as

Em ¼
m0M2

0

16p3

Z
d3k

7DðkÞ72

k2
ð #m � kÞ2; ð3Þ
with M0 the magnitude of the magnetization
and #m a unit magnetization vector;

3. the volume averaged (or magnetometric) de-
magnetization tensor is given by

/NSij ¼
1

V

Z
V

d3rNijðrÞ

¼
1

8p3V

Z
d3k

7DðkÞ72

k2
kikj ; ð4Þ

where V is the volume of the particle.
3. Numerical methods for the computation of the

demagnetization tensor field

3.1. Starting from the shape amplitude DðkÞ

The shape amplitude DðkÞ can be computed
analytically for many different particle shapes,
among others: sphere [4], cylinder [4], truncated
paraboloid [2], Platonic solids [5,6], and so on.
When the shape amplitude is used to compute the
DTF, one must select a 3D computational grid on
which the tensor field will be calculated. In most
cases, the use of FFT dictates that the dimensions
of the grid be powers of 2; although such a
requirement is no longer necessary when modern
FFT algorithms are used (e.g., the FFTW package
[7]). Since the shape function is a discontinuous
function, its Fourier representation always re-
quires an infinite support. Truncation of this
support to a finite computational grid results in
the familiar Gibbs oscillations near all disconti-
nuities of the shape function. These oscillations are
also present in the DTF, since the phases of the
Fourier components NijðkÞ are identical to those of
the Fourier components DðkÞ: It is possible,
however, to propose a Fourier space filter func-
tion, gðkÞ; which can be used to suppress the real
space Gibbs oscillations.

The filter function is essentially a piecewise
continuous cubic polynomial, used primarily
for image reconstruction by parametric cubic
convolution [8]. The function gðkÞ is given by

gðkÞ ¼ g0ðkÞ þ ag1ðkÞ
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¼
3

k2
sinc2ðkÞ � sincð2kÞ
� �

þ a
2

k2
3sinc2ð2kÞ � 2sincð2kÞ � sincð4kÞ
� �

:

ð5Þ

where a is a parameter which can be chosen to
optimize the reconstruction. The optimum value
for image reconstruction is a ¼ �0:5 [8]. This filter
function gðkÞ is the one-dimensional (1D) Fourier
transform of the piecewise continuous cubic
polynomial

gðrÞ ¼ g0ðrÞ þ ag1ðrÞ; ð6Þ

with

g0ðrÞ ¼
ð27r7þ 1Þð7r7� 1Þ2 7r7o1

0 elsewhere

(
ð7Þ

and

g1ðrÞ ¼

7r72ð7r7� 1Þ 7r7o1;

ð7r7� 1Þð7r7� 2Þ2 1o7r7o2;

0 elsewhere:

8><
>: ð8Þ

Multiplication of the frequency spectrum of a 1D
function with discontinuities with the filter func-
tion dramatically reduces the Gibbs phenomenon.
As an example, consider the periodic step function
which alternates between þ1 and �1: Its Fourier
representation is given by

f ðxÞ ¼
XN
n¼0

An sinðnpxÞ

with

A2n ¼ 0

A2nþ1 ¼
4

pð2n þ 1Þ
:

8<
: ð9Þ

When this series is truncated after 25 terms
ðn ¼ 25Þ; then the resulting function is shown in
Fig. 1(a). An overshoot of 9% of the amount of
the discontinuity occurs, and the function oscil-
lates (Gibbs oscillations) around the values 71
elsewhere. If the Fourier coefficients are multiplied
by the filter function, i.e., An-AngðknÞ; then the
resulting reconstructed function is significantly
smoother, as shown for the values a ¼ �0:5; 0.0,
and 0.5 in Fig. 1(b)–(d). The inset shows the details
at the discontinuity, magnified by a factor of 4:
When the number of terms is increased to n ¼ 50;
the overshoot remains, and the filtered functions
are shown on the second row of Fig. 1. It is evident
that the filtered functions more closely approx-
imate the step function, and that the reconstruc-
tion with a ¼ 0 creates the best approximation.
For a ¼ �0:5 a small overshoot remains, whereas
a ¼ 0:5 produces significant rounding at the
discontinuity. For the remainder of this paper we
will use the filter function in Eq. (5) with a ¼ 0:
The same filter function can be used in three
dimensions, provided the length of the frequency
vector k is used for k:

If we denote the tensor function kikj=k2 by
kijðkÞ; then, according to Eq. (1), the DTF is given
by

NijðrÞ ¼ F�1 DðkÞkijðkÞ
� �

: ð10Þ

If an analytical version of DðkÞ is available, then
this equation should be replaced by a filtered
version for all numerical work:

NijðrÞ ¼ F�1 DðkÞkijðkÞgð7k7Þ
� �

: ð11Þ

To show the validity of the filtering approach,
we compare analytical results for the uniformly
magnetized cylinder with computational results
with and without the filter function. The shape
amplitude for a cylinder with radius R and aspect
ratio t ¼ d=R; with d the half-height, is given by
(Part I and [4]):

DðkÞ ¼ 2V
J1ðk>RÞ

k>R
sincðdkzÞ; ð12Þ

where J1ðxÞ is the Bessel function of first order, k>

and kz are the in-plane and orthogonal compo-
nents of k; resp., and sincðxÞ � sinðxÞ=x: Fig. 2
shows the tensor element Nrrðr; 0Þ for a cylinder
with radius R ¼ 16 (in pixels) and t ¼ 0:75: The
continuous curve represents the analytical solu-
tion, derived in Part I. The triangles on the left side
of the figure correspond to the tensor element
computed using Eq. (10) on a grid of 1283 points.
The truncation of the Fourier representation (12)
after only 64 different frequencies results in strong
Gibbs oscillations in the tensor element. Applica-
tion of the Fourier filter in Eq. (11) reduces these
oscillations and the resulting tensor element is
shown on the right side of Fig. 2. There are only
two points, one on either side of the discontinuity,
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Fig. 1. (a) and (e) show the reconstruction of series expansion 9 for n ¼ 25 and 50, resp. The other curves are reconstructions using the

filtered Fourier coefficients for three different values of the parameter a: �0:5; 0.0, and 0.5. The insets show a magnified view of the

discontinuity (�4).
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for which the numerical value does not agree with
the analytical result. If the number of grid points
were doubled in each direction, then there would
still be two incorrect points on either side of the
discontinuity, but now those points would be
closer to the discontinuity. In the limit of a
continuous grid, the numerical result would
coincide with the analytical solution. In practice,
the number of grid points is determined by the
available computing memory. The mean deviation
between the analytical and numerical values for
the tensor elements, excluding the points closest to
the discontinuity, is typically about 0.1% for
computations that include the filter function,
and closer to 1% if the filter function is not used.
These numbers are somewhat sensitive to the size
of the cylinder relative to the size of the computa-
tional array. Smaller cylinders result in better
agreement between theoretical values and numer-
ical computations.
3.2. Starting from the shape function DðrÞ

Consider a 3D regular grid with N grid points
along each axis. Any object for which the inside
and outside can be unambiguously defined can be
represented by an array of 1’s and 0’s, correspond-
ing to the interior and exterior points, respectively.
This is essentially a discrete representation of the
shape function DðrÞ: Special topological cases,
such as the Klein bottle and other non-orientable
surfaces for which there is no inside or outside,
cannot be dealt with in this formalism. The object
need not be simply connected, so that hollow or
shell-like objects can also be treated. One can also
place multiple non-connected objects on the
discrete array and compute the demagnetization
tensor field for the set of all objects. Note that this
then assumes that the magnetization direction
used to contract the tensor to obtain the magnetic
field, H; must be identical in all objects that make
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Fig. 2. Comparison between the analytical value of Nrrðr; 0Þ for
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expression of the shape amplitude in Eq. (12) (left curve). The
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Fig. 3. Comparison between the analytical value of Nrrðr; 0Þ for
a cylinder with radius R ¼ 16 and t ¼ 0:75 (solid line), and a

numerical simulation based on the shape function DðrÞ: On the

left side, the shape function was discretized with only two

intensity levels: 0 and 1: On the right, a smoother version of the

shape function was used. The smoothened result should be

compared with the Fourier space filtered result of Fig. 2.
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up the complete array. If this is not the case, then
the demagnetization tensor field must be computed
for each object separately, then contracted with
respect to the magnetization direction for that
object, and the resulting magnetic field configura-
tions for each object added together to obtain the
magnetic field for the assembly of objects.

If we assume periodic boundary conditions,
then the numerical Fourier transform of the 3D
grid will approximate the analytical Fourier trans-
form for the smaller spatial frequencies, but for
higher spatial frequencies discrepancies will arise
because of the finite support of the Fourier space.
Only frequencies below the Nyquist frequency are
meaningful. An inverse Fourier transform will re-
create the original object without Gibbs oscillations,
even when this object has discontinuities.

This observation leads to a simple numerical
algorithm for the computation of the DTF on a
discrete 3D grid:

1. create the discrete shape function DðrÞ on the
computational grid;

2. convert to Fourier space DðkÞ;
3. multiply by the kijðkÞ tensor field;
4. transform back to real space to obtain the DTF

NijðrÞ:

As with all periodic continuation problems, care
must be taken to properly select the size of the
object with respect to the size of the computational
grid. Near the edges of the grid, the values of the
tensor field may be affected by the periodic
boundary conditions.

As an example, consider the analytical solution
for the uniformly magnetized cylinder in Part I.
For a cylinder with radius R ¼ 16 (pixels) and
aspect ratio t ¼ 0:75; the tensor field component
Nrrðr; 0Þ is shown as a continuous line in Fig. 3.
When the tensor element is computed using the
above algorithm, the function values on the left
side of the figure are obtained (triangles). The
agreement with the analytical solution is rather
good, except at two points close to the disconti-
nuity. The numerical result can be improved by
considering a modified shape function DðrÞ: The
modification consists of a smoothing operation,
which is carried out for all grid points that are
within a certain distance from the object surface.
There are many possible smoothing options. A
simple smoothing operation is carried out as
follows: for each grid point located less than Z
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grid spacings from the object surface (either inside
or outside the object), the normal distance d to the
object surface is computed. For points on the
inside of the object, the distance d is taken to be
negative. The shape function value at this grid
point is then given by

D ¼ cos2 p
ðdþ ZÞ
4Z


 �
: ð13Þ

This function smoothly goes from 1 inside the
object to 0 outside the object. The tensor element
Nrrðr; 0Þ for the smoothed shape function is shown
on the right in Fig. 3 (diamonds). The function
values are identical to those for the unsmoothed
shape function on the left, except for the two
points near the discontinuity. For these points, the
values are nearly identical to those obtained using
the Fourier filtered shape amplitude (see right side
of Fig. 2). The mean deviation between theoretical
and numerical values, excluding the points closest
to the discontinuity, is again about 0.1% when
used with the smoothing operation, and closer to
1% without smoothing.
4. Example applications

In this section, we will apply the numerical
formalisms described in Section 3 to a number of
important shapes: the regular hexagonal plate, the
truncated paraboloid, and a ‘‘pacman’’ thin plate.
These shapes are shown schematically in Fig. 4(a)–
(c). The regular hexagonal plate (Section 4.1) is
an important building block for micromagnetic
simulations, where it represents the shape of a
finite element cell. The truncated paraboloid
z

h=aR2

ar2

(a) (b)

2a

2c

Fig. 4. Schematic illustration of the shapes for which example DTF c

(b) truncated paraboloid and (c) ‘‘pacman’’ particle.
(Section 4.2) approximates the shape of the tip of
a magnetic force microscope. The ‘‘pacman’’ shape
(Section 4.3) was recently proposed [9] as a novel
shape for a sub-micron NiFe element for magnetic
random access memory (MRAM) applications.
We conclude this section with the numerical
computation of the critical aspect ratio for
polygonal disks.

4.1. The regular hexagonal plate

The shape amplitude of a regular hexagonal
plate has been given in Eq. (14) of Part I, and is
rather complicated. Since there is no straightfor-
ward analytical method to compute the real space
DTF, starting from this shape amplitude, we apply
the Fourier space filter function of Eq. (11). Two-
dimensional section of the resulting DTF are
shown in Fig. 5 for a plate with aspect ratio Z ¼
2
5
(computation carried out on a 1283 grid). The top

two rows show a grayscale representation of the
tensor field elements for a plane going through the
center of the hexagonal plate. All images have a
common grayscale from �0:4 (black) to þ0:79
(white). The axes in the lower corner of each image
indicate the orientation of the two-dimensional
section. The bottom two rows show two different
sections (xy and xz) of the eigenvalues of the
tensor field, ranked from smallest (l1) to largest
(l3). The eigenvalues reveal the true symmetry of
the tensor field.

4.2. The truncated paraboloid

The shape amplitude of the truncated parabo-
loid can be computed analytically, and the explicit
Rr

(c)

ω

R r

R=3r

omputations are shown in Sections 4.1–4.3: (a) hexagonal plate,
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Fig. 5. DTF tensor components (a) and eigenvalues (b) for a

hexagonal plate with c=a ¼ 2
5
: The basis vectors indicate the

orientation of the planar sections; all sections go through the

center of the plate. The eigenvalues are ranked in ascending

order. The intensity ranges [black,white] correspond to

½�0:399; 0:784
 (a) and ½�0:399; 0:789
 (b).

Fig. 6. DTF tensor components, Nrr; Nyy; Nzz and Nrz; for
three different paraboloids: (a) a ¼ 2=3; (b) a ¼ 3=32; and (c)

a ¼ 1=24: The sections contain the paraboloid axis. The

intensity range [black,white] corresponds to the ranges

½�0:315; 0:485
 (a), ½�0:486; 0:566
 (b) and ½�0:489; 0:635
 (c).
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expression was given in Eq. (26) of Part I. While it
is possible to carry out analytically a part of the
inverse Fourier transform to compute the DTF
NijðrÞ; we will instead only show numerical results.
Care must be taken in the numerical evaluation of
the Lommel functions, in particular when the two
arguments are large and nearly equal to each other
[10,11]. Fig. 6 shows a planar section of the DTF
components for three different truncated para-
boloids, characterized by a ¼ h=R2: The sections
contain the paraboloid center axis. The figure
shows the cylindrical components of NijðrÞ: Nrr;
Nyy; Nzz; and Nrz:

Fig. 7 shows the eigenvalues of the DTF tensors
for the paraboloids shown in Fig. 6. The odd
numbered rows show a section normal to the
paraboloid axis at half the height h=2; the other
rows are sections containing the axis. Eigenvalues
are ranked in ascending order. The lowest
eigenvalue, l1; varies most strongly outside the
particle, while the largest eigenvalue, l3; is mostly
important inside the particle. The middle eigenva-
lue varies both inside and outside the particle. This
is a general behavior, observed for many different
particle shapes.

4.3. ‘‘Pacman’’-shaped plates

The opening angle of the ‘‘pacman’’ shape fully
determines its geometry. DTF simulations were
carried out for the angles o ¼ np=4 with n ¼ 1y4;
and for a particle thickness of t ¼ R=15; similar to
that used in the experiments reported in Ref. [9].
The results are shown in Fig. 8. For each particle
shape, this figure shows the six tensor components
as a two-dimensional section through the center of
the outer circle of the particle shape (xy section for
Nxx;Nxy;Nyy; and Nzz; xz section for Nxz; and yx

section for Nyz). The eigenvalues of the DTF are
also shown for two different section orientations:
xy and xz:
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Fig. 7. DTF tensor eigenvalues li (i ¼ 1y3) for the same

paraboloids as in Fig. 6. The horizontal sections in the first,

third and fifth rows, intersect the paraboloid at half height, the

vertical sections in the remaining rows contain the paraboloid

axis. The intensity range [black,white] corresponds to the ranges

½�0:318; 0:511
 (a), ½�0:487; 0:705
 (b) and ½�0:508; 0:787
 (c).

S. Tandon et al. / Journal of Magnetism and Magnetic Materials 271 (2004) 27–3834
The volumetric demagnetization tensor can be
computed by means of Eq. (4). Fig. 9 shows the
eigenvalues of the volumetric demagnetization
factors as a function of the opening angle o for
the pacman shape of Fig. 4(c) (solid lines), as well
as for a simpler shape where the radius r of the
inner circle vanishes (dashed lines) (referred to as
PM-I in Ref. [9]). The Nzz demagnetization factor
is about 8% smaller for the new ‘‘pacman’’ shape.
This is consistent with the results presented in
Ref. [9]; the ‘‘pacman’’ shape of Fig. 9 shows no
magnetic domain walls, regardless of the value of
the opening angle o; whereas the shape with r ¼ 0
shows a domain with reverse magnetization
surrounding the sharp corner at the center of the
particle. Rounding of this corner results in a
smaller demagnetization field, which favors the
single domain state of the particle.

4.4. Computation of the critical aspect ratio for

polygonal disks

In Part I, Section 5, we computed analytically
the demagnetization energy for the uniformly
magnetized cylinder with aspect ratio t ¼ t=2R;
with t the cylinder height and R the radius. It was
shown that, if we denote by y the angle between
the magnetization direction and the cylinder axis,
the demagnetization energy is proportional to an
expression of the following form:

EmðtÞBf1ðtÞð3 cos2 y� 1Þ þ f2ðtÞ cos2 y; ð14Þ

where

f1ðtÞ ¼
1

t
1

3p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
4

2F1
1

2
;
3

2
; 2;

1

1þ t2

� �" #
; ð15Þ

f2ðtÞ ¼
1

2
: ð16Þ

The critical aspect ratio tc corresponds to a saddle
point in the energy (see Fig. 5 in Part I), and can be
computed from the condition 3f1ðtÞ þ f2ðtÞ ¼ 0;
which leads to tc ¼ 0:9065 for the cylinder.

The cylinder can be considered as the limiting
case of a series of regular polygonal disks of height
t and order N; for N-N: It was shown by
Beleggia et al. [6] that the shape amplitude of a
regular polygonal disk of order N can be
computed analytically. The result is given by

DðkÞ ¼ 4ic
sincðckzÞ
k2

x þ k2
y

XN

p¼1

X3
j¼1

kpjsincðmpjÞe
inpj ; ð17Þ
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Fig. 8. DTF tensor components and eigenvalues for four different ‘‘pacman’’ shapes. All sections go through the center of the outer

circle of the particle shape. The top six figures for each opening angle o depict sections of the DTF, whereas the bottom two rows

depict two sections of the eigenvalues of the DTF in ascending order.
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with

kpj ¼ cpk1 þ spm1; cpk2 � spm2;�aðspkx þ cpkyÞ
� �

;

ð18aÞ

mpj ¼ cpm1spk1; cpm2 þ spk2; aðcpkx � spkyÞ
� �

; ð18bÞ

npj ¼ mp1;mp2; hðspkx þ cpkyÞ
� �

; ð18cÞ

cp ¼ cosðypÞ; sp ¼ sinðypÞ; yp ¼ 2pa; h ¼ a=tana;
and a ¼ p=N: The parameters ki and mi are given
by

kj ¼
a

2
�okx þ ky;okx þ ky

� �
; ð19aÞ
mj ¼
a

2
kx þ oky;�kx þ oky

� �
; ð19bÞ

with o ¼ 1=tana:
Using Eq. (17), we can compute the magneto-

static energy (3) as a function of the angle y and
the aspect ratio t ¼ c=a of the polygonal disk,
where c ¼ t=2; and a is half the edge length. Since
each regular polygonal disk has a rotation axis of
order N normal to the disk, the magnetostatic
energy will be invariant with respect to the
azimuthal component of the magnetization direc-
tion [3]. This in turn means that the angular
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Fig. 9. Comparison between the magnetometric demagnetiza-

tion factors for the ‘‘pacman’’ shape and a simpler shape for

which the radius of the inner circle is equal to zero. The

horizontal axis shows the opening angle, as defined in Fig. 4.
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integrations will result in the angular dependence
of the energy on y shown for the cylinder in
Eq. (14). Therefore, by fitting the energy to the
form (14), we obtain both functions fiðtÞ for a
given N: Application of the equation 3f1ðtÞ þ
f2ðtÞ ¼ 0 then results in the critical aspect ratio
tcðNÞ: Note that the definition of the aspect ratio
of the polygonal disk involves the thickness and
the edge length, whereas for the cylinder the aspect
ratio depends on the thickness and the diameter.
We can convert from edge length to either the
inscribed or the circumscribed diameter by multi-
plying the aspect ratio by tan a or sin a; respec-
tively. The results of numerical simulations for
N ¼ 3y11 are shown in Fig. 10. The top curve
corresponds to tcðNÞtan a; the bottom curve to
tcðNÞsin a: The dash-dotted line is the analytical
value tcðNÞ for the limiting cylinder. It is clear
that the two curves for the outer and inner circle
converge towards each other and to the critical
aspect ratio of the cylinder, when N-N:

When the critical aspect ratio tcðNÞ is plotted vs.
N; the linear function shown in Fig. 10b is
obtained. This linear behavior can be understood
as follows: for large N; the critical aspect ratio can
be written as

tcðNÞ ¼ c0 þ c1N: ð20Þ

Converting this aspect ratio to either tcðNÞtana or
tcðNÞsin a; and taking the limit for N-N we must
obtain the critical aspect ratio tcðNÞ for the
cylinder:

lim
N-N

ðc0 þ c1NÞ
tan a

sin a

(
¼ lim

N-N

c0

N
þ c1

� �
p ¼ c1p

¼ tcðNÞ ¼ 0:90647; ð21Þ
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from which follows c1 ¼ 0:90647=p ¼ 0:28854: A
linear fit to the data of Fig. 10b leads to c1 ¼
0:29276 and c0 ¼ �0:07806; in reasonable agree-
ment with the theoretical result.
5. Summary

We have presented two accurate and fast
numerical methods for the computation of the
demagnetization tensor field, the demagnetization
energy, and the volumetric demagnetization fac-
tors of particles with an arbitrary, finite shape. If
an analytical expression for the particle shape
amplitude is available, then the DTF can be
computed using a 3D inverse FFT operation. To
eliminate Gibbs oscillations, which occur due to
the intrinsic discontinuous nature of the shape
function, DðrÞ; we have proposed a Fourier space
filter function. If no explicit expression for the
shape amplitude is available, then the DTF can be
computed starting from a 3D real space array of 0
and 1 values, defining the shape of the particle.
The formalism can also be applied to the
computation of magnetostatic self-energy for a
particle with an arbitrary shape. It was shown that
the critical aspect ratio for the in-plane vs. axial
magnetization states in a regular polygonal disk
of arbitrary order varies linearly with the order
N; for sufficiently large N; and converges to the
value for the cylinder. While both the direct space
and the Fourier space numerical approaches result
in the same accuracy for the demagnetization
tensor elements, the Fourier space approach has
the advantage of being fast, provided of course
that an analytical expression for the shape
amplitude can be found. The direct space ap-
proach has the advantage that truly arbitrary
shapes can be dealt with in a straightforward
manner, at the expense of somewhat longer
computation times.

While it is difficult in practice to obtain a
uniform magnetization in a body of arbitrary
shape, accurate knowledge of the DTF for such an
object is desirable, in particular in the case of small
particles. Below a critical size limit, where the
exchange term is largely predominant over other
energy contributions, all particles will show a
single domain magnetization state. While there
will be small deviations from the uniformly
magnetized state, in particular near edges and
corners, knowledge of the uniformly magnetized
state is useful as a first order approximation to the
real magnetization state. The computational
methods described in this paper provide a fast
and accurate means to access this information.
Regarding magnetocrystalline anisotropy, where
this effect is not negligible due to the possible
polycrystalline nature of the particle, we can
simply account for it by specifying the direction
of the magnetization along the preferential axis of
the particle.

The methods proposed in this paper are based
on the use of the fast Fourier transform, for which
many speed-optimized implementations are avail-
able. Given the simplicity and accuracy of the
methods, they should find quick acceptance in the
computational magnetism community, and may
well replace the slower direct space methods,
which often require the numerical evaluation of
two 3D integrals.
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